Bienvenido a Escolar.com
escol@r.com - sección apuntes
Buscar en Escolar.com

Apuntes: Usos y aplicaciones de la energía nuclear
Contribución de cesar el Sunday, June 17 @ 13:37:03 EST
Apuntes Física

Los reactores.

En todo el mundo se han construido diferentes tipos de reactores (caracterizados por el combustible, moderador y refrigerante empleados) para la producción de energía eléctrica. Por ejemplo, en Estados Unidos, con pocas excepciones, los reactores para la producción de energía emplean como combustible nuclear óxido de uranio isotópicamente enriquecido, con un 3% de uranio 235. Como moderador y refrigerante se emplea agua normal muy purificada. Un reactor de este tipo se denomina reactor de agua ligera (RAL).

En el reactor de agua a presión (RAP), una versión del sistema RAL, el refrigerante es agua a una presión de unas 150 atmósferas. El circuito secundario está aislado del agua del núcleo del reactor, por lo que no es radiactivo. La radiación emitida por el reactor durante su funcionamiento y por los productos de la fisión después de la desconexión se absorbe mediante blindajes de hormigón de gran espesor situados alrededor del reactor y del sistema primario de refrigeración. En 1990, alrededor del 20% de la energía eléctrica generada en Estados Unidos procedía de centrales nucleares, mientras que este porcentaje es casi del 75% en Francia.

Por ello, los programas de energía nuclear de Canadá, Francia y Gran Bretaña se centraron en reactores de uranio natural, donde no puede emplearse como moderador agua normal porque absorbe demasiados neutrones. El sistema de reactores canadienses de deuterio-uranio (CANDU), empleado en 20 reactores, ha funcionado satisfactoriamente, y se han construido centrales similares en la India, Argentina y otros países.

En Gran Bretaña y Francia, los primeros reactores de generación de energía a gran escala utilizaban como combustible barras de metal de uranio natural, moderadas por grafito y refrigeradas por dióxido de carbono (CO2) gaseoso a presión.

En Gran Bretaña, este diseño inicial fue sustituido por un sistema que emplea como combustible uranio enriquecido. Más tarde se introdujo un diseño mejorado de reactor, el llamado reactor avanzado refrigerado por gas (RAG). En España, la tecnología adoptada en los reactores de las centrales nucleares es del tipo de agua ligera; sólo la central de Vandellòs tiene reactor de grafito refrigerado con CO2.

Reactores de propulsión .

Para la propulsión de grandes buques de superficie, como el portaaviones estadounidense Nimitz, se emplean reactores nucleares similares al RAP. Los reactores para propulsión de submarinos suelen ser más pequeños y emplean uranio muy enriquecido para que el núcleo pueda ser más compacto. Estados Unidos, Gran Bretaña, Rusia y Francia disponen de submarinos nucleares equipados con este tipo de reactores.

Reactores de investigación

En muchos países se han construido diversos reactores nucleares de pequeño tamaño para su empleo en formación, investigación o producción de isótopos radiactivos. Estos reactores suelen funcionar con niveles de potencia del orden de 1 MW, y es más fácil conectarlos y desconectarlos que los reactores más grandes utilizados para la producción de energía.

Una variedad muy empleada es el llamado reactor de piscina. Pueden colocarse sustancias directamente en el núcleo del reactor o cerca de éste para ser irradiadas con neutrones. También pueden extraerse neutrones del núcleo del reactor mediante tubos de haces, para utilizarlos en experimentos.

Reactores autorregenerativos

Existen yacimientos de uranio, la materia prima en la que se basa la energía nuclear, en diversas regiones del mundo. La característica fundamental de un 'reactor autorregenerativo' es que produce más combustible del que consume. Existen varios sistemas de reactor autorregenerativo técnicamente factibles. Cuando el uranio 238 absorbe neutrones en el reactor, se convierte en un nuevo material fisionable, el plutonio, a través de un proceso nuclear conocido como desintegración b (beta). El reactor no puede contener ningún material moderador, como el agua, que pueda frenar los neutrones. En Gran Bretaña, Francia, Rusia y otros Estados de la antigua URSS funcionan reactores autorregenerativos, y en Alemania y Japón prosiguen los trabajos experimentales.

En uno de los diseños para una central RARML de gran tamaño, el núcleo del reactor está formado por miles de tubos delgados de acero inoxidable que contienen un combustible compuesto por una mezcla de óxido de plutonio y uranio: un 15 o un 20% de plutonio 239 y el resto uranio. El núcleo está rodeado por una zona llamada capa fértil, que contiene barras similares llenas exclusivamente de óxido de uranio. El vapor se genera en un circuito secundario de sodio, separado del circuito de refrigeración del reactor (radiactivo) por los intercambiadores de calor intermedios de la vasija del reactor. Todo el sistema del reactor nuclear está situado dentro de un gran edificio de contención de acero y hormigón.

En un reactor grande, a lo largo de 20 años se produce suficiente combustible para cargar otro reactor de energía similar. En el sistema RARML se aprovecha aproximadamente el 75% de la energía contenida en el uranio natural, frente al 1% del RAL.

Combustibles y residuos nucleares

Los combustibles peligrosos empleados en los reactores nucleares presentan problemas para su manejo, sobre todo en el caso de los combustibles agotados, que deben ser almacenados o eliminados de alguna forma.

El ciclo del combustible nuclear

Cualquier central de producción de energía eléctrica es sólo parte de un ciclo energético global. El ciclo del combustible de uranio empleado en los sistemas RAL es actualmente el más importante en la producción mundial de energía nuclear, y conlleva muchas etapas. Las barras se agrupan en elementos de combustible y se transportan a la central nuclear.

El combustible agotado todavía contiene casi todo el uranio 238 original, aproximadamente un tercio del uranio 235 y parte del plutonio 239 producido en el reactor. Cuando el combustible agotado se almacena de forma permanente, se desperdicia todo este contenido potencial de energía. Cuando el combustible se reprocesa, el uranio se recicla en la planta de difusión, y el plutonio 239 recuperado puede sustituir parcialmente al uranio 235 en los nuevos elementos de combustible.

En el ciclo de combustible del RARML, el plutonio generado en el reactor siempre se recicla para emplearlo como nuevo combustible. Los materiales utilizados en la planta de fabricación de elementos de combustible son uranio 238 reciclado, uranio agotado procedente de la planta de separación isotópica y parte del plutonio 239 recuperado.

Seguridad nuclear

La preocupación de la opinión pública en torno a la aceptabilidad de la energía nuclear procedente de la fisión se debe a dos características básicas del sistema. La segunda es el hecho de que los combustibles nucleares uranio 235 y plutonio 239 son los materiales con que se fabrican las armas nucleares. En la década de 1950 se pensó que la energía nuclear podía ofrecer un futuro de energía barata y abundante. Las plantas de enriquecimiento de uranio y de fabricación de combustible contienen grandes cantidades de hexafluoruro de uranio (UF6), un gas corrosivo.

Seguridad de los reactores .

Se ha dedicado una enorme atención a la seguridad de los reactores. En un reactor en funcionamiento, la mayor fuente de radiactividad, con diferencia, son los elementos de combustible. Durante el funcionamiento de una central nuclear, es inevitable que se liberen algunos materiales radiactivos. Los productos de fisión pasan al refrigerante, y si se rompe el sistema de refrigeración, los productos de fisión penetran en el edificio del reactor.

Los sistemas de los reactores emplean una compleja instrumentación para vigilar constantemente su situación y controlar los sistemas de seguridad empleados para desconectar el reactor en circunstancias anómalas. En los reactores de agua ligera, el refrigerante está sometido a una presión elevada. Para evitar una pérdida total de refrigeración del núcleo, los reactores están dotados con sistemas de emergencia para refrigeración del núcleo, que empiezan a funcionar automáticamente en cuanto se pierde presión en el circuito primario de refrigeración. Cuando comenzó el accidente, el sistema de seguridad desconectó el reactor, y el sistema de emergencia para enfriamiento del núcleo empezó a funcionar poco tiempo después según lo prescrito. A diferencia de la mayoría de los reactores de los países occidentales, el reactor de Chernobil carecía de edificio de contención. Una estructura semejante podría haber impedido que el material saliera del reactor. Reprocesamiento del combustible

La fase de reprocesamiento del combustible plantea diversos riesgos radiológicos. Esta planta reprocesará combustible agotado de centrales británicas y extranjeras.

Almacenamiento de residuos

El último paso del ciclo del combustible nuclear, el almacenamiento de residuos, sigue siendo uno de los más polémicos.

Fusión nuclear

La liberación de energía nuclear puede producirse en el extremo bajo de la curva de energías de enlace (ver tabla adjunta) a través de la fusión de dos núcleos ligeros en uno más pesado. En la década de 1950 se produjo la primera liberación a gran escala de energía de fusión, aunque incontrolada, en las pruebas de armas termonucleares realizadas por Estados Unidos, la URSS, Gran Bretaña y Francia.

La energía aparece en un primer momento como energía cinética del núcleo de helio 4 y el neutrón, pero pronto se convierte en calor en el gas y los materiales próximos.

Para que un dispositivo de fusión resulte útil, la energía producida debe ser mayor que la energía necesaria para confinar y calentar el plasma. Además, las investigaciones son sumamente costosas.




 
.
.